
Journal of Pure and Applied Algebra 61 (1989) 243-250 

North-Holland 

243 

CATEGORIES OF AFFINE SPACES* 

Aurelio CARBON1 

Dipartimento di Matematica, via C. Saldini SO, 20133 Milano, Italy 

Communicated by P.J. Freyd 

Received 9 August 1988 

Revised 30 October 1988 

We give a characterization of slice categories of additive categories with kernels purely in terms 

of a property involving finite limits and finite sums which generalizes the notion of a modular 

lattice. In particular, we give a new characterization of additive categories just in terms of finite 

sums and finite products. 

Introduction 

In view of the recent remarks of Schanuel (see [l]) that the fundamental construc- 

tion of the Grassmann algebra is based on the category Aff(k) of k-affine spaces 

and that this last is equivalent to the full subcategory of the slice category k-Vect/k 

determined by surjective maps, it becomes even more sensible to have a simple 

categorical characterization of the categories of the form A/X, where A is an ad- 

ditive category with kernels (see [2]). Even if additivity itself is lost for all X# 0, the 

slice categories A/X retain some aspects of additivity, and the problem is to have 

a precise description of what all slice categories A/X have in common. Such a prob- 

lem is reminiscent of a basic one in topos theory, namely, to discover what all the 

categories Sh,(C) of sheaves on a site (C,J) have in common, and the Giraud 

Theorem tells us the answer: a category E is equivalent to a category of sheaves for 

some site iff 

(1) E is a cocomplete distributive category; 
(2) equivalence relations in E are effective and universal; 
(3) E has a set of generators. 

Condition (1) (see Section 1 for a precise definition) is the one which really 

distinguishes toposes as categories of sheaves of sets from the categories of sheaves 

of modules, which satisfy conditions (2) and (3) but not (I), and which after all were 

the additive origin of topos theory. Condition (1) is basically the categorical version 

of a cocomplete distributive lattice (also called locale), so that a common intuition 

about a Grothendieck topos is that it is a ‘glorified’ locale. 
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Keeping in mind the above lattice-theoretical intuition about toposes, the answer 

for slices of additive categories is surprisingly simple: they are ‘glorified’ versions 

(in the same sense as distributive categories are) of modular lattices, and we will call 

them modular categories (see again Section 1 for the precise definition). Easily one 

sees that slices of additive categories with kernels E = A/X are modular and that one 

can recover A as Pt(E), but the theorem is now that a left exact category with finite 

sums E is modular iff 

(1) Pt(E) is additive with kernels, and 

(2) the canonical functor E -+ Pt(E)/(l + 1 + 1) is an equivalence (1 denoting a 

terminal object), 

so that modular categories are precisely the slices of additive categories with kernels; 
in particular additive categories are precisely the modular categories in which ‘0 = 1’) 

that is in which the unique arrow 0 + 1 from an initial object to a terminal one is 

invertible. Also, differently from the lattice-theoretical experience, the only 

category which is both distributive and modular is the trivial one. 

The above definitions and theorems are developed in Sections 1 and 2; in Section 

3 we discuss a very peculiar property of reflexive graphs in additive categories with 

kernels which is stable under slicing and which generalizes the above condition (1). 

This axiom was conjectured by Bill Lawvere as a possible characterization of slices 

of additive categories in a private conversation when we were both visiting Sydney 

in February 1988; we still do not know if such a property is in fact equivalent to 

modularity. 

1. Modular categories 

The notion of distributive category is well known: let E be a left exact category 

with finite sums (observe that such a requirement is equivalent to asking that each 

slice category E/U have finite sums and finite products); then E is distributive if: 

(1) for each slice category E/U the canonical arrows 

(xxY)+(Xxz)+xx(Y+z) 

and 

0+Xx0 

(where 0 denotes an initial object) are invertible; 
(2) the injections X -% X+ Y z Y in a sum are mono and disjoint. 
As noticed by S. Schanuel, the above conditions can be equivalently restated by 

asking that the functors 

E/l+l+ExE 

(induced by the injections 1 -+ 1 + 1, where 1 denotes a terminal object), and 

E/O+* 
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(where * denotes a terminal category) be equivalences. Among the examples of 

distributive categories are all topos, the category of topological spaces, the dual 

category of commutative rings; the coproduct completion of any left exact category 

is also distributive. A large class of non distributive categories are the additive ones: 

an additive category which is distributive is degenerate. 

Clearly the notion of a distributive category can be thought as a generalization 

to categories of a distributive lattice: the order reflection of a distributive category 

is a distributive lattice and the only reason why a distributive lattice L fails to be 

a distributive category (unless L = *) is the disjointness of the sums stated in axiom 

(2). So, following this analogy, we can ask ourselves what could be the notion of 

a modular category; recalling that a lattice L is modular when for each XI z the in- 

duced inclusion XV(~AZ)~(XV_Y)AZ is in fact an equality for all yeL, such a 

generalization should be the following: 

Definition. A modular category is a left exact category E yth finite sums such that: 

(1) for each slice category E/U and for each arrow X - Z E E/U the canonical 

arrow 

(ix,f > ( > i,XZ 
:X+(YxZ)+(X+Y)xZ 

is invertible for each object YEE/U; 

(2) for each arrow f :X-* U the commutative square 

f 
X-U 

ix I I ii 
is a pullback. 

Notice that as in the case of distributive categories the only reason why a modular 

lattice L is not a modular category (unless L = *) is condition (2), which in the case 

of distributive categories is always true. This also shows that axioms (1) and (2) are 

independent, since there are distributive categories which do not satisfy axiom (1). 

Finally, notice that the order reflection of a modular category is a modular lattice. 

The obvious question is now if there are non trivial examples of modular 

categories and the answer is yes, all additive categories with kernels are modular; 
more than this, since the notion of a modular category (like the notion of a 

distributive one) is stable under slicing, all slices of additive categories with kernels 
are modular. The proof of condition (2) is easy, and to prove condition (1) it is 

enough, by the Yoneda Lemma, to prove that (1) is satisfied by the category of 
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abelian groups: let 

be a homomorphism of abelian groups over the abelian group U and let (Y -% U) 

be an abelian group over U; then the canonical arrow 

x+ YXZ L(X+Y)xZ c ) u u 

turns out to be @(x,y,z) = (~,~,z+f(x)), which is obviously invertible. 

What we will show in the following is that in fact the slices of additive categories 
with kernels are all possible examples of modular categories; and we will prove this 

fact by a characterization of modular categories reminiscent of the Schanuel 

characterization of distributive categories. 

2. The characterization 

If E is a category with a terminal object 1, denote by Pt(E) the category whose 

objects are the points 1 -% X and whose arrows are the point preserving arrows; 

if the sums with 1 are representable in E, then Pt(E) is the category of algebras for 

the monad on E defined by X=X+ 1. Notice that if A is additive with kernels, then 

by the usual arguments that can be carried out in additive categories one has 

Pt(A/U) = A, for any object U. 

Theorem. Let E be a left exact category with finite sums; then E is modular if and 
only if: 

(1) Pt(E) is additive with kernels, and 
(2) the canonical functor 

E -+ Pt(E)/(l + 1 + 1) 

(1 --t 1 + 1 denoting an injection) is an equivalence. 

Proof. Clearly if conditions (1) and (2) are satisfied, then E is modular, being 

equivalent to an affine category. 

To prove the converse, let us first show that every free tilde algebra, which turns 

out to be simply a point of the form i , : 1 + X-t 1, has a unique abelian group 

structure for which i, is the zero element and moreover that every arrow X+ Y+ 1 

extends to a group homomorphism X+ 1 + Y+ 1; then additivity of Pt(E) will 

follow by showing that the Kleisli category of the tilde monad is equivalent to the 

Eilenberg-Moore one. Now observe that the arrow 

@x : (X+X+ 1) --+ (X+ 1) x (X+ 1) 
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obtained by applying modularity to the arrow X 2 1 A X+ 1 is invertible (tx 

denoting the unique arrow from X to a terminal object); so we can define an ad- 

dition 

(X+l)x(x+l)~(x+l) 

on (X+ 1) as 

(X+1)x(X+1) @xl 
6x+ 1 

- (X+X+1) - (X-t 1) 

where 6X denotes the codiagonal map. The proof that such an operation is 

associative and commutative is tedious but straightforward (just work out the 

canonical isomorphism (X-t X+ X+ 1) --) (X+ 1) x (X-t 1) x (X+ 1) and apply 

associativity and commutativity of S,), as is the proof that the injection 

ii : 1 -X-t 1 is the zero element. Now the opposite map ux for the addition can be 

verified to be 

u,=(X+l) A (x+l)x’l (X+1)x (X+1) % X+(X+1) X+1(X+1) - (X+1), 

where 0, denotes the invertible arrow induced from modularity applied to the ar- 

row ix :X-X+ 1 and the object 1. 

Easily one has that every arrow f : (X+ 1) + (Y+ 1) of pointed objects is in fact 

a group homomorphism with respect to the above group structures. Finally, the 

uniqueness of the group structure on the objects X+ 1 is also easily proved using 

the condition of ii being the zero element and the definition of the canonical iso- 

morphism @ x; the basic computation consists in showing that the composite 

@;‘[(X+l)xii] is X+i,. 

If 1 z X is a pointed object, then modularity implies that the canonical arrow 

is invertible, so that every pointed object is isomorphic to a free one; hence the 

Kleisli category of the tilde monad in equivalent to the Eilenberg-Moore one, and 

Pt(E) is an additive category with kernels. 

If i2 : 1 d (1 + 1) is the second inje+ttion, the correspondence sending an object X 

of E to the object 1 L (X-t 1) x (1-t 1) of Pt(E)/(l + 1 + 1) defines a functor 

E + Pt(E)/(l + 1-t 1) 

which is full and faithful: faithfulness follows since from axiom (2) with U= 1 we 

get that injections i y : Y-, Y+ 1 are mono, being inverse images of the point 

1 + 1 + 1 which is always a mono; fullness means that if @ : (X+ 1) + (Y+ 1) is an 

arrow such that @ii = ii and (ty+ l)@ = b,+ 1, then there exists an arrow f : X+ Y 

such that @ =f + 1; but from (ty+ l)@ = tx+ 1 and axiom (2) with U= 1, we get that 
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in the pullback 

.f 
P-Y 

_i I I iy 
X+1-Y+l 

@ 

the left-hand vertical arrow can be assumed to be the injection ix :X+X+ 1 (since 

from axiom (2) the square 

*Y 
Y-l 

iY ! I i2 

Y+ltl+l 
Y 

is a pullback), so that the condition @it = i, ensures that @ =f+ 1. 

Finally the functor can be proved to be essentially surjective on objects: if 

f 
1 LX- 1+1=12 l+l 

is an object of Pt(E)/(l -+ 1 + l), then the modularity of the slice category E/l + 1, 

applied to the arrow 

(1 5 l+l) JL (X f l+l) 

and to the object (1 L 1 + 1) given by the first injection, guarantees that this ob- 

ject is isomorphic to the image of the object U of E defined by the pullback of it 

along f. 0 

Notice that in the proof we just used axiom (2) with U = 1, so that such a not 

stable form of axiom (2) is in fact equivalent to the stable one. Notice also that ax- 

iom (2) alone can not imply property (2) of the theorem, as it is shown by the exam- 

ple of the category of sets. Finally, from the above proof emerges the following 

characterization of additive categories: 

Corollary. A category A is additive iff 
(1) A has finite sums and products and for each arrow f : X- Z of A the 

canonical arrow 

(i,,f > ( ) iy x Z 
:X+(Yxz)-+(X+Y)xZ 

is invertible, and 
(2) A is pointed, i.e. the unique arrow 0 + 1 is invertible. 0 
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3. Groupoids and reflexive graphs 

If A is the category of abelian groups and if 

is an oriented reflexive graph in A, then addition provides a way to define a 

homomorphism (composition) 

c2-Cl 

on the abelian group C2 = {(f, g) E Cr x C, 1 d,(f) = do(g)} of composable arrows 

by 

gf = f + g - i(d, (f)). 

Easily one can show that d,(gf) = d,,(f) and dl (gf) = dl (g) and that composition 

is associative and has identities provided by i. In other words, the given reflexive 

graph extends to a category object in A, which in fact is a groupoid object, the in- 

verse of an arrow f being the arrow 

f-’ = WU))+Wt(f))-J 

Notice that every graph morphism is automatically functorial with respect to the 

above composition. Notice also that the above composition is unique over the given 

reflexive graph, since the condition of being a homomorphism means the func- 

toriality of the sum: 

(W+(gh) = (k+ g)(f+ h); 

so, denoting identities simply with 1, we get: 

f+g = lf+gl = (1 +g)(f+ 1) = (g+ l)(f+ 1) = gf+ 1. 

Clearly the above argument carries over to any additive category A with kernels, 
so that we have just proved that any such a category satisfies the following axiom: 

Axiom A. The forgetful functor from the category of groupoids in A to the 
category of reflexive graphs in A is an isomorphism. 

Since the above axiom makes sense in any left exact category, we can ask if there 

are examples of left exact categories not necessarily additive for which the axiom 

holds. A quite obvious class of examples is provided by the left exact categories of 

the form E = A/X, where A is an additive category with kernels, since it is not hard 

to see that such an axiom is stable under slicing; so all modular categories satisfy 

axiom A, hence modularity implies axiom A and the question arises of deciding 
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whether in a left exact category E with finite sums it is in fact equivalent to 

modularity. 
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